FORCE ACTING ON A SPHERE IN AN INHOMOGENEOUS FLOW OF AN
IDEAL INCOMPRESSIBLE FLUID

0. V. Voinov UDC 532.529.6

We consider the motion of a sphere of variable radius in an inhomogeneous (with gradient velocity)
and unsteady potential flow of an ideal incompressible fluid. Assuming that the sphere radius is small in
comparison with the distance to the flow boundary, we calculate the force of the effect of the flow on the
sphere.

Certain cases of motion of a sphere in an arbitrary potential flow were investigated by Zhukovskii [1].
For a stationary elliptical cylinder the problem was solved by Gurevich [2]; the force acting on a moving
circular cylinder of variable radius was calculated by Yakimov [3]. A similar problem was considered in
[4] for a sphere, but an incorrect expression was obtained for the force.

The derivation is based, just as in [4], on the direct integration of the pressure forces over the sphere,
but instead of a model problem on the flow potential about the sphere in a second-order multipole field we
consider the problem of the velocity potential of an arbitrary flow, and we estimate the error in the equa-
tions obtained for the forces.

1. Velocity Potential

The velocity potential at the point y;=q; (the y; are the Cartesian coordinates, and the q; are the
coordinates of the center of the sphere) in the absence of the sphere is represented by the Taylor series
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Here and below, we sum over the repeated indices i, j. ...k, each of which assumes the values 1, 2,
and 3, the number of the indices i, j, ... k in (1.1) equaling n. Each term of the series n=1, 2, ... in (1.1)
is a harmonic function.

If a sphere of radius R is located in the flow, then for the velocity potential the following condition is
satisfied:
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If we neglect the effect of the far boundaries, then we must require that the perturbation of potential
®— &, have singularities only within the sphere and decrease out to infinity. The unique harmonic function
that satisfies these conditious and condition (1.2) will be
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This equation holds if the distance r; to the flow boundaries considerably exceeds the sphere radius.
Otherwise we must take into account an additional potential perturbation owing to the promixity of the sphere
to the flow boundaries. Since the velocity perturbation at the boundaries caused by a distant body is of or-
der R%r,® for R =const and R%,* for R’ # 0, the perturbation of potential (1.3) for R—0 will be of order no
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less than R® or R?, respectively. We can conclude that only the first several terms of the series (1.3) need
be taken into account.

2. TForce of Effect of Flow on Sphere

Based on the potential (1.3), applying the Cauchy— Lagrange integral, we can obtain values for the
pressure on the sphere S, and calculate the force of the effect F.

The Cauchy— Lagrange integral in a system moving with velocity g ;- relative to this system, in which
the motion of the fluid is described by the potential ®, has the form

b 1 L e p
T WOr— g Gt U=

Here U is the potential of the external mass forces g;.

The force of the effect of the flow on the sphere equals
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On the sphere, the terms of the series (1.3) are orthogonal to Xm for n>1. Therefore
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Here v, is the flow velocity in the absence of the sphere. To calculate the contribution of the re-

maining terms to Eq. (2.1) we must have in the integrand the components of the flow velocity on the sphere.
From (1.3) for r= R
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On the surface of the sphere
PyPrs = Py

Taking account of this equation and Eq. (2.3) we obtain
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A contribution to the integral (2.1) is made only by polynomials with an odd sum of powers x, x,, and
X3. appearing in the term B gWjWg. which figures in (2.4). Dropping terms of order R°® and above, we can
write
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We then must take into account that
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Hence also from the determination of Plk in (2.3) we obtain

g p LT hn .
2% TR 48 = (601 + 80y — 48;,0,) 15 &

Substitution of the last equation into (2.5) gives
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From Egs. (2.1),(2.2), and (2.6) we can obtain for the force of the effect of the flow on the body
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Here Vi is the flow velocity in the absence of the sphere; the values of Yim and grad Vi and also the
mass force , are calculated at the point q;. As follows from the derivation, the error of Eq. (2.7) is of

order R®. For R’ =0,0owing to the effect of the flow boundaries, the error can be ~R*R%.

According to Eq. (2.7) the force of the effect of the flow on a sphere of constant volume is determined
by the acceleration of a fluid particle in the absence of the sphere, and by the acceleration of the sphere,
and it depends neither on the velocity of the sphere in the flow nor on the velocity of the fluid.

Equation (2.7) agrees with Zhukovskii's equation {1]
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obtained for a stationary sphere in a flow with potential equal to the product of a function of the coordinates
and a function of the time (a is the absolute acceleration of the fluid at the point coinciding with the center
of the sphere, and V is the volume of the sphere).

For a gas bubble in the absence of viscosity we can set F =0, since the mass of the gas is negligibly
small. Then (2.7) gives that the acceleration of the gas buhble is equal to three times the acceleration of
the fluid. This fact was known earlier for a homogeneous flow (without a velocity gradient) [5].

The author thanks G. Yu. Stepanov for helpful remarks.
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